成為PCB設(shè)計(jì)高手,這兩點(diǎn)必會(huì)
發(fā)布日期:2024-11-25
點(diǎn)擊次數(shù):104
通常,大學(xué)里沒有專門講授PCB接地和去耦基礎(chǔ)知識(shí)的課程,這方面知識(shí)的掌握很可能來自實(shí)驗(yàn)室的經(jīng)驗(yàn),或者同行與前輩的分享,大多數(shù)電氣工程專業(yè)畢業(yè)生都是在工作中學(xué)習(xí)這些技能,因而只要大家對(duì)電路設(shè)計(jì)過程(從原理圖到布局直至PCB最終生產(chǎn))涉及的關(guān)鍵問題稍有了解,就會(huì)擁有勝人一籌的優(yōu)勢。
1
PCB接地小知識(shí)
一. 完美接地vs.不完美接地
圖1a顯示信號(hào)源與負(fù)載之間隔開了一段距離,接地G1和G2通過一個(gè)回路連接起來。理想情況下,G1和G2之間的接地阻抗為0,因此接地回路電流不會(huì)在G1和G2之間產(chǎn)生一個(gè)差分電壓。
圖1a. 在電路中的任何一點(diǎn),電流的算術(shù)和為0,或者說流出去的必會(huì)流回來。若G1和G2之間的阻抗為0,則G1和G2之間無差分電壓
遺憾的是,讓回流路徑保持零阻抗是不可能的,接地回路阻抗在接地電流作用下,會(huì)在G1和G2之間產(chǎn)生一個(gè)誤差電壓ΔV。G1和G2之間的連接不僅有電阻,還有電感,這里忽略雜散電容的影響。但在本文“Part 2:PCB去耦小知識(shí)”部分,我們會(huì)了解到電源層和接地層之間的電容是如何幫助高頻去耦的。
圖1b. 接地阻抗中流動(dòng)的信號(hào)和/或外部電流產(chǎn)生誤差電壓ΔV
G1和G2之間流動(dòng)的電流可以是信號(hào)電流或其他電路引起的外部電流。
可以看到圖2試驗(yàn)板中的總線阻抗如何既有阻性元件又有感性元件。接地總線阻抗是否會(huì)影響電路運(yùn)行,不僅取決于電路的直流精度要求,而且取決于模擬信號(hào)頻率和電路中數(shù)字開關(guān)元件產(chǎn)生的頻率分量。
圖2. 采用無焊試驗(yàn)板的電路
如果最大信號(hào)頻率為1 MHz,并且電路僅需要幾毫安(mA)電流,那么接地總線阻抗可能不是問題。然而,如果信號(hào)為100 MHz,并且電路驅(qū)動(dòng)一個(gè)需要100 mA的負(fù)載,那么阻抗很可能會(huì)成為問題。
大部分情況下,由于"母線(buss wire)"在大多數(shù)邏輯轉(zhuǎn)換等效頻率下具有阻抗,將其用作數(shù)字接地回路是不能接受的。例如,#22標(biāo)準(zhǔn)導(dǎo)線具有約20 nH/英寸的電感和1
mΩ/英寸的電阻。由邏輯信號(hào)轉(zhuǎn)換產(chǎn)生的壓擺率為10 mA/ns的瞬態(tài)電流,在此頻率下流經(jīng)1英寸的該導(dǎo)線,將形成200 mV的無用壓降:
對(duì)于具有2 V峰峰值范圍的信號(hào),此壓降會(huì)轉(zhuǎn)化為約10%的誤差(大約3.5位精度)。即使在全數(shù)字電路中,該誤差也會(huì)大幅降低邏輯噪聲裕量。對(duì)于低頻信號(hào),該1 mΩ/英寸電阻也會(huì)產(chǎn)生一個(gè)誤差。例如,100 mA電流流過1英寸的#22標(biāo)準(zhǔn)導(dǎo)線時(shí),產(chǎn)生的壓降約為:
一個(gè)2 V峰峰值范圍的信號(hào)數(shù)字化到16位精度時(shí),其1 LSB = 2 V/216= 30.5 μV。因此,導(dǎo)線電阻引起的100
μV誤差約等于16位精度水平的3.3 LSB誤差。圖3顯示了模擬接地回路中流動(dòng)的高噪聲數(shù)字電流如何在輸入模擬電路的電壓VIN中產(chǎn)生誤差。將模擬電路地和數(shù)字電路地連接在同一點(diǎn)(如下方的正確電路圖所示),可以在某種程度上緩解上述問題。
圖3.模擬電路和數(shù)字電路使用單點(diǎn)接地可降低高噪聲數(shù)字電路引起的誤差效應(yīng)
二. 接地層在當(dāng)今系統(tǒng)中必不可少
在無焊試驗(yàn)板中,甚至在圖2所示的采用總線結(jié)構(gòu)的電路板中,能夠用來降低接地阻抗的手段并不多。無焊試驗(yàn)板在工業(yè)系統(tǒng)設(shè)計(jì)中是非常罕見的。實(shí)接地層是提供低阻抗回流路徑的工業(yè)標(biāo)準(zhǔn)方法。生產(chǎn)用印刷電路板一般有一層或多層專門用于接地。這種方法相當(dāng)適合最終生產(chǎn),但在原型系統(tǒng)中較難實(shí)現(xiàn)。
圖4.顯示了一個(gè)包含模擬電路、數(shù)字電路以及一個(gè)混合信號(hào)器件(模數(shù)轉(zhuǎn)換器或數(shù)模轉(zhuǎn)換器等)并針對(duì)PCB的典型接地安排。
圖4. 針對(duì)混合信號(hào)系統(tǒng)PCB的良好接地解決方案
模擬電路和數(shù)字電路在物理上相隔離,分別位于各自的接地層上?;旌闲盘?hào)器件橫跨兩個(gè)接地層,系統(tǒng)單點(diǎn)或星形接地是兩個(gè)接地層的連接點(diǎn)。
我們已經(jīng)知道,關(guān)于模擬接地和數(shù)字接地,還有其他已被證明有效的接地原理,當(dāng)然,這些原理全都基于同樣的概念——分析模擬和數(shù)字電流路徑,然后采取措施以較大限度地減少它們之間的相互影響。
2
PCB去耦小知識(shí)
一. 了解基于電源抑制參數(shù)的去耦需求
放大器和轉(zhuǎn)換器等模擬集成電路具有至少兩個(gè)或兩個(gè)以上電源引腳。對(duì)于單電源器件,其中一個(gè)引腳通常連接到地,諸如ADC和DAC等混合信號(hào)器件可以具有模擬和數(shù)字電源電壓以及I/O電壓。像FPGA這樣的數(shù)字IC還可以具有多個(gè)電源電壓,例如內(nèi)核電壓、存儲(chǔ)器電壓和I/O電壓。
不管電源引腳的數(shù)量如何,IC數(shù)據(jù)手冊都詳細(xì)說明了每路電源的的允許范圍,包括推薦工作范圍和最大絕對(duì)值,而且為了保持正常工作和防止損壞,必須遵守這些限制。然而,由于噪聲或電源紋波導(dǎo)致的電源電壓的微小變化—即便仍在推薦的工作范圍內(nèi)—也會(huì)導(dǎo)致器件性能下降。例如在放大器中,微小的電源變化會(huì)產(chǎn)生輸入和輸出電壓的微小變化,如圖5所示。
圖5.放大器的電源抑制顯示輸出電壓對(duì)電源軌變化的靈敏度
放大器對(duì)電源電壓變化的靈敏度通常用電源抑制比(PSRR)來量化,其定義為電源電壓變化與輸出電壓變化的比值。圖5顯示了典型高性能放大器(OP1177)的PSR隨頻率以大約6dB/8倍頻程(20dB/10倍頻程)下降的情況,圖中顯示了采用正負(fù)電源兩種情況下的曲線圖。盡管PSRR在直流下是120dB,但較高頻率下會(huì)迅速降低,此時(shí)電源線路上有越來越多的無用能量會(huì)直接耦合至輸出。
如果放大器正在驅(qū)動(dòng)負(fù)載,并且在電源軌上存在無用阻抗,則負(fù)載電流會(huì)調(diào)制電源軌,從而增加交流信號(hào)中的噪聲和失真。
盡管數(shù)據(jù)手冊中可能沒有給出實(shí)際的PSRR,數(shù)據(jù)轉(zhuǎn)換器和其他混合信號(hào)IC的性能也會(huì)隨著電源上的噪聲而降低。電源噪聲也會(huì)以多種方式影響數(shù)字電路,包括降低邏輯電平噪聲容限,由于時(shí)鐘抖動(dòng)而產(chǎn)生時(shí)序錯(cuò)誤。
二. 適當(dāng)?shù)木植咳ヱ钤赑CB上是必不可少的
典型的4層PCB通常設(shè)計(jì)為接地層、電源層、頂部信號(hào)層和底部信號(hào)層。表面貼裝IC的接地引腳通過引腳上的過孔直接連接到接地層,從而較大限度地減少接地連接中的無用阻抗。
電源軌通常位于電源層,并且路由到IC的各種電源引腳。顯示電源和接地連接的簡單IC模型如圖6所示。
圖6. 顯示走線阻抗和局部去耦電容的IC模型
IC內(nèi)產(chǎn)生的電流表示為IT。流過走線阻抗Z的電流產(chǎn)生電源電壓VS的變化。如上所述,根據(jù)IC的PSR,這會(huì)產(chǎn)生各種類型的性能降低。
通過使用盡可能短的連接,將適當(dāng)類型的局部去耦電容直接連接到電源引腳和接地層之間,可以較大限度地降低對(duì)功率噪聲和紋波的靈敏度。去耦電容用作瞬態(tài)電流的電荷庫,并將其直接分流到地,從而在IC上保持恒定的電源電壓。雖然回路電流路徑通過接地層,但由于接地層阻抗較低,回路電流一般不會(huì)產(chǎn)生明顯的誤差電壓。
圖7顯示了高頻去耦電容必須盡可能靠近芯片的情況。否則,連接走線的電感將對(duì)去耦的有效性產(chǎn)生不利影響。
圖7. 高頻去耦電容的正確和錯(cuò)誤放置
圖7左側(cè),電源引腳和接地連接都可能短,所以是有效的配置。然而在圖7右側(cè)中,PCB走線內(nèi)的額外電感和電阻將造成去耦方案的有效性降低,且增加封閉環(huán)路可能造成干擾問題。
三. 選擇正確類型的去耦電容
低頻噪聲去耦通常需要用電解電容(典型值為1μF至100μF),以此作為低頻瞬態(tài)電流的電荷庫。將低電感表面貼裝陶瓷電容(典型值為0.01μF至0.1μF)直接連接到IC電源引腳,可較大程度地抑制高頻電源噪聲。所有去耦電容必須直接連接到低電感接地層才有效。此連接需要短走線或過孔,以便將額外串聯(lián)電感降至低點(diǎn)。
大多數(shù)IC數(shù)據(jù)手冊在應(yīng)用部分說明了推薦的電源去耦電路,大家應(yīng)始終遵循這些建議,以確保器件正常工作。
鐵氧體磁珠(以鎳、鋅、錳的氧化物或其他化合物制造的絕緣陶瓷)也可用于在電源濾波器中去耦。鐵氧體在低頻下(<100kHz)為感性—因此對(duì)低通LC去耦濾波器有用。100kHz以上,鐵氧體成阻性(低Q)。鐵氧體阻抗與材料、工作頻率范圍、直流偏置電流、匝數(shù)、尺寸、形狀和溫度成函數(shù)關(guān)系。
鐵氧體磁珠并非始終必要,但可以增強(qiáng)高頻噪聲隔離和去耦,通常較為有利。這里可能需要驗(yàn)證磁珠永遠(yuǎn)不會(huì)飽和,特別是在運(yùn)算放大器驅(qū)動(dòng)高輸出電流時(shí)。當(dāng)鐵氧體飽和時(shí),它就會(huì)變?yōu)榉蔷€性,失去濾波特性。需要我們特別注意的是,某些鐵氧體甚至可能在完全飽和前就是非線性,因此,如果需要功率級(jí),以低失真輸出工作,當(dāng)原型在此飽和區(qū)域附近工作時(shí),應(yīng)檢查其中的鐵氧體。典型鐵氧體磁珠阻抗如圖8所示。在為去耦應(yīng)用選擇合適的類型時(shí),需要仔細(xì)考慮由于寄生電阻和電感產(chǎn)生的非理想電容性能。
圖8. 鐵氧體磁珠的阻抗
PCB是電子元器件的支撐體,是電子元器件電氣連接的載體,它被稱為“電子航母”,廣泛應(yīng)用于通訊、消費(fèi)電子、計(jì)算機(jī)等領(lǐng)域,要想設(shè)計(jì)出色絕非易事。同時(shí),PCB設(shè)計(jì)作為硬件電路設(shè)計(jì)的基礎(chǔ),亦是電子工程師之本,夯實(shí)基礎(chǔ)才有起高樓的能力。
聲明:
本文部分信息來源于網(wǎng)絡(luò),如有問題請(qǐng)聯(lián)系,謝謝
宏熙半導(dǎo)體(無錫)有限公司http://www.tjgo1mo.cn